Let the complex number z1,z2, and z3 be the vertices of an equilateral triangle. Let z0 be the circumcentre of the triangle.
Then show that z21+z22+z23=3z20.
Open in App
Solution
Since z1,z2,z3 are the vertices of an equilateral triangle Therefore circumcenter (z0)= centroid (z1+z2+z33) ...(1) Also for equilateral triangle z21+z22+z23=z1z2+z2z3+z3z1 ...(2) On squaring (1), we get 9z02=z21+z22+z23+2(z1z2+z2z3+z3z1)⇒9z02=z21+z22+z23+2(z21+z22+z23)⇒3z02=z21+z22+z3