Let the degree of polynomial (√x5−1+x)9−(√x5−1−x)9 be ′α′ then α−192 is
The expression (√x5−1+x)9−((√x5−1)−x)9 is a polynomial of degree 21
So 21−192=1
Let √x5−1=λ
(λ+x)9−(λ−x)9=(9C0λ9+9C1λ8x+9C2λ7x2+....)−(9C0λ9−9C1λ8x+.....)−(9C0λ9−9C1λ8x+...)=2(9C1λ8x+9C3λ6x3+....)2(9(x5−1)4x)+9C3(x5−1)3x3....
⇒ degree of polynomial = 21.