Let the double ordinate PP′ of the hyperbola x24−y23=1 is produced both sides to meet asymptotes of hyperbola in Q and Q′. The product (PQ)(PQ′) is equal to
Open in App
Solution
x24−y23=1
Let P be (2secθ,√3tanθ) ⇒P′ will be (2secθ,−√3tanθ) Asymptote will be y=±√32x ∴Q will be : (2secθ,√3secθ) and Q′ will be : (2secθ,−√3secθ)
So, PQ=√3(secθ−tanθ) PQ′=√3(tanθ+secθ) ∴PQ⋅PQ′=3(sec2θ−tan2θ)=3