Let the equation of the curve passing through the origin if the middle point of the segment of its normal from any point of the curve to the x - axis lies on the parabola 2y2=x be y2=kx+m−enx.Find k+m+n ?
Open in App
Solution
Y−y=−1y′(X−x) At x axis, X=x+y.y′ mid point of PQ =(2x+yy′2,y2) mid point lies on 2y2=x ∴2y24=2x+yy′2⇒ydydx−y2=−2x Put y2=t ∴2ydydx=dtdx 12dtdx−t=2x dtdx+(−2)t=−4x ∴te−2x=−4∫e−2x.xdx+c ∴y2e−2x=e−2x(2x+1)+c x=0,y=0⇒c=−1 ∴y2=2x+1−e2x