wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let the function f:(0,π)R be defined by f(θ)=(sinθ+cosθ)2+(sinθcosθ)4. Suppose, the function f has a local minimum at θ precisely when θ{λ1π,...,λrπ}, where 0<λ1<<λr<1. Then the value of λ1++λr is _____.


Open in App
Solution

Step 1: Simplifying f(θ)

Given,f(θ)=(sinθ+cosθ)2+(sinθcosθ)4

f(θ)=(sinθ+cosθ)2+(sinθcosθ)4=(sin2θ+cos2θ)+2sinθcosθ+((sinθcosθ)2)2[(a+b)2=a2+b2]=1+sin2θ+(sin2θ+cos2θ2sinθcosθ)2[(a-b)2=a2-b2]=1+sin2θ+(1sin2θ)2=1+sin2θ+1+sin22θ2sin2θ=sin22θsin2θ+2f(θ)=sin2θ122-14+2f(θ)=sin2θ122+74

Step 2: Finding θ

Because θ[0,π]

Therefore, 2θ[0,2π]

f(θ)min. when sin2θ=12

Therefore,2θ=π6,5π6

θ=π12,5π12

Step 3: Finding the value of λ1+λ2

λ1=112;λ2=512λ1+λ2=1+512λ1+λ2=612λ1+λ2=12λ1+λ2=0.5

Therefore, the value of λ1++λr, i.e., λ1+λ2 is 0.5.


flag
Suggest Corrections
thumbs-up
4
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon