f:R→R
(A):f(x)=x3−x2+(x−1)sinx;g:R→R
h(x)=f(x)⋅g(x)=[x3−x2+(x−1)sinx]⋅g(x)
h′(1+)=limh→0[(1+h)3−(1+h)2+h⋅sin(1+h)]g(1+h)h
=limh→0(1+h3+3h+3h2−1−h2−2h+hsin(1+h))g(1+h)h
=limh→0(h3+2h2+h+hsin(1+h))g(1+h)h
=limh→0(1+sin(1+h))g(1+h)
h′(1−)=limh→0[(1−h)3−(1−h)2+(−h)⋅sin(1−h)]g(1−h)−h
=limh→0(1−h3−3h+3h2−1−h2+2h−hsin(1−h))g(1−h)−h
=limh→0(1+sin(1−h))g(1−h)
as g(x) is continuous at x=1
∴g(1+h)=g(1−h)=g(1)
h′(1+)=h′(1−)=(1+sin1)g(1)
′A′ is correct
C is always true as
h(x)=f(x)⋅g(x)⇒h′(x)=f′(x)⋅g(x)+f(x)⋅g′(x)