The correct option is A (−∞,−√2]∪[√2,∞)
f(x)=√x2−|x+2|+x
For the square root to exist,
x2−|x+2|+x≥0
Case I:x<−2
x2+(x+2)+x≥0⇒x2+2x+2≥0
⇒(x+1)2+1≥0⇒x∈R∴x∈(−∞,−2) ⋯(1)
Case II:x≥−2
x2−(x+2)+x≥0⇒x2−2≥0
⇒x∈(−∞,−√2]∪[√2,∞)∴x∈[−2,−√2]∪[√2,∞) ⋯(2)
Hence, from equation (1) and (2),
x∈(−∞,−√2]∪[√2,∞)