The correct option is B −x2+x+sinx+cosx−log(1+|x|)
Odd Extension of function mean extending the function to get odd function.
To makef(x) an odd function in the interval [−1,1], we re-define f(x) as follows
f(x)={f(x),0≤x≤1−f(−x),−1≤x≤0
={x2+x+sinx−cosx+log(1+|x|),0≤x≤1−x2+x+sinx+cosx−log(1+|x|),−1≤x≤0
Thus the odd extension of f(x) to the interval [- 1, 1] is −x2+x+ sinx +cosx−log(1+|x|)
Hence, option 'B' is correct.