Let the function y=f(x) satisfies the differential equation x2dydx=y2e1/x(x≠0) and limx→0−f(x)=1. Identify the CORRECT statement(s) ?
A
Range of f is (0,1)−{12}
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
f(x) is bounded
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
limx→0+f(x)=1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
e∫0f(x)dx>1∫0f(x)dx
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct options are A Range of f is (0,1)−{12} Bf(x) is bounded De∫0f(x)dx>1∫0f(x)dx x2dydx=y2e1x ⇒dyy2=e1xx2dx Integrating both sides, ∫dyy2=∫e1xx2dx ⇒−1y=−e1x+C Given, limx→0−f(x)=1 ⇒−1=0+C⇒C=−1 ∴−1y=−e1x−1 ⇒y=11+e1x
dydx=e1xx2(1+e1x)2 ∴dydx>0∀x∈R−{0} limx→±∞11+e1x=12 and limx→0+11+e1x=0 limx→0−11+e1x=1