Let the latus rectum subtends a right angle at the center of the hyperbola x2a2−y2b2=1. If e is the eccentricity of the hyperbola then [e] is where [.] represents the greatest integer function.
Open in App
Solution
Coordinates of the end points of the latus rectum of the hyperbola x2a2−y2b2=1 is A(ae,b2a) and B(ae,−b2a) Let O be the origin ∴OA2+OB2=AB2⇒2(ae)2+2b4a2=4b4a2e=b2a2⋯(∵e2=1+b2a2)e2−1=e⇒e=√5+12⇒1<e<2⇛[e]=1