Given line 3x+2y=24
Now, the points
A=(0,12),B=(8,0)
Midpoint of line segment AB
=(4,6)
The equation of the perpendicular bisector of AB is
y−6=−8−00−12(x−4)⇒3y−18=2x−8⇒2x−3y+10=0
This line meets the y=−1 at
C=(−132,−1)
Thus the area of the △ABC
=12∣∣∣x1x2x3x1y1y2y3y1∣∣∣=12∣∣
∣∣08−1320120−112∣∣
∣∣=12|−96−8−78|=91 sq. units