Let the equation of normal is Y−y=−1m(X−x), where m=dydx As it passes through (a,b)
b−y=−1m(a−x)=−dxdy(a−x)
⇒(b−y)dy=(x−a)dx
⇒by−y22=x22−ax+c....(i)
It passes through (3,−3) & (4,−2√2)
∴−3b−92=92−3a+c
⇒3a−3b−c=9...(ii)
Also
−2√2b−4=8−4a+c
⇒4a−2√2b−c=12...(iii)
Also a−2√2b=3…(iv) (given)
From (ii)−(iii)
⇒−a+(2√2−3)b=−3…(v)
From (iv)+(v)
⇒b=0,a=3
∴a2+b2+ab=9