Let the opposite angular points of a square be (3, 4) and (1, –1). Find the coordinates of the remaining angular points
Concept:
Application:
Let ABCD be a square and let A ( 3,4) and c ( 1,-1) be the given angular points.
Let B ( x,y) be the unknown vertex.
Then AB = BC
⇒AB2=BC2
⇒(x−3)2+(y−4)2=(x−1)2+(y+1)2
⇒4x+10y−23=0
⇒x=23−10y4……(1)
In right- angled triangle ABC , we have
AB2+BC2=AC2
⇒(x−3)2+(y−4)2+(x−1)2+(y+1)2
=(3−1)2+(4+1)2
⇒x2+y2−4x−3y−1=0……(2)
Substituting the value of x from (1) and (2),
we get
(23−10y4)2+y2−(23−10y)−3y−1=0
⇒4y2−12y+5=0⇒(2y−1)(2y−5)=0
⇒y=12 or 52
Putting y=12 and y=52 respectively in (1) , we get
x=92 and −12 respectively.
Hence , the required vertices of the square are (92,12) and (−12,52)