The correct option is D The values of [a] are the roots of the equation x3+3x2+2x=0, where [.] is the greatest integer function
4x2−2x+a=0 has both the roots in (−1,1)
Then
(i) D≥0⇒4−16a≥0⇒a≤14 ⋯(1)
(ii) f(−1)>0⇒6+a>0⇒a>−6 ⋯(2)
(iii) f(1)>0⇒2+a>0⇒a>−2 ⋯(3)
(iv) −1<−b2a<1⇒−1<14<1
From equation (1),(2) and (3), we get
a∈(−2,14]
Therefore, a2∈[0,4)
Minimum value of a2 is 0.
The number of integral values of a is 2.
[a]=−2,−1,0
Now, x3+3x2+2x=0
⇒x(x2+3x+2)=0⇒x(x+2)(x+1)=0⇒x=−2,−1,0
Hence, the values of [a] are roots of x3+3x2+2x=0