Let the sequence a1,a2,a3,.....a2n form an AP. Then, a21−a22+a23−....+a22n−1−a22n is?
A
n2n−1(a21−a22n)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
2nn−1(a22n−a21)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
nn+1(a21+a22n)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of the above
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is An2n−1(a21−a22n) Since, a1,a2,a3,.....a2n form an AP. Therefore, a2−a1=a4−a3=....a2n−a2n−1=d Here, a21−a22+a23−a24+....+a22n−1−a22n =(a1−a2)(a1+a2)+(a3−a4)(a3+a4)+....+(a2n−1−a2n)⋅(a2n−1+a2n) =−d(a1+a2+....+a2n)=−d(2n2(a1+a2n) Also, we know a2n=a1+(2n−1)d ⇒d=a2n−a12n−1 ⇒−d=a1−a2n2n−1 ∴Therefore, the sum is =n(a1−a2n)⋅(a1+a2n)2n−1 =n2n−1⋅(a21−a22n).