Finding sequence
Given, a=1 and an=an−1+2 for n≥2,n∈N
Substituting n=2,3,4 and 5 in an, we get
a2=a2−1+2
⇒a2=a1+2
⇒a2=1+2
⇒a2=3
a3=a3−1+2
⇒a3=a2+2
⇒a3=3+2
⇒a3=5
a4=a4−1+2
⇒a4=a3+2
⇒a4=5+2
⇒a4=7
a5=a5−1+2
⇒a5=a4+2
⇒a5=7+2
⇒a5=9
Hence, the first five terms of the sequence are 1,3,5,7 and 9.
The corresponding series is
1+3+5+7+9+⋯.