Distinguish Acute Angle Bisectors and Obtuse Angle Bisectors
Let the sides...
Question
Let the sides of △ABC be 3x+4y=0,4x+3y=0 and x=3. If (h,k) be the centre of the circle inscribed in △ABC, then the value of (h+k) is
Open in App
Solution
Equations of angle bisectors of ∠A, we get 3x+4y√32+42=±4x+3y√32+42⇒3x+4y=±(4x+3y)⇒x=±y By observation, we see that the internal angle bisector of A has negative slope, so the equation of internal bisector is x=−y⋯(1) Equation of obtuse angle bisector of ∠B, we get 3x+4y√32+42=±x−31⇒3x+4y=±5(x−3)⇒3x+4y=±(5x−15)⇒3x+4y=5x−15 or 3x+4y=−5x+15⇒2x−4y−15=0 or 8x+4y−15=0 By observation, we see that the external angle bisector of A has positive slope, so the equation of external bisector is 2x−4y−15=0⋯(2) Solving equation (1) and (2), we get the incentre −2y−4y−15=0⇒6y=−15⇒y=−52⇒x=52 So, the incentre (h,k)=(52,−52) ∴h+k=0