S=1+2(1+1n)+3(1+1n)2+4(1+1n)3+...n(1+1n)n−1 ...(1)
(1+1n)S=(1+1n)+2(1+1n)2+3(1+1n)3+...(n−1)(1+1n)n−1+n(1+1n)n ...(2)
Subtracting (2) from (1), we get
(1−(1+1n))S=1+(1+1n)+(1+1n)2+(1+1n)3+...+(1+1n)n−1−n(1+1n)n
=1+(1+1n)⎛⎜
⎜⎝(1+1n)n−1(1+1n)−1⎞⎟
⎟⎠−n(1+1n)n
(−1n)S=1+(1+1n)⎛⎜
⎜⎝(1+1n)n−11n⎞⎟
⎟⎠−n(1+1n)n
=1+n(1+1n)((1+1n)n−1)−n(1+1n)n
=1+n(1+1n)n+1−n(1+1n)−n(1+1n)n
⇒S=n2⇒S=n3−1∴k=3