The correct option is C 3√10
Given curve : y2=x3
Let point Q=(t2,t3)
For slope of tangent at P:2ydydx=3x2
So, slope of tangent at P(4,8)= slope of PQ
⇒(dydx)(4,8)=t3−8t2−4
⇒3=t3−8t2−4
⇒3=(t−2)(t2+2t+4)(t−2)(t+2)
⇒t2−t−2=0
⇒t=−1,2; (t≠2)
So, Q≡(1,−1)
⇒PQ=√81+9=3√10