Let the unit vectors a and b be perpendicular to each other and the unit vector c be inclined at an angle θ to both a and b. If c=xa+yb+x(x×b), then
A
x=cosθ,y=sinθ,z=cos2θ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
x=sinθ,y=cosθ,z=−cos2θ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
x=y=cosθ,z2=cos2θ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
x=y=cosθ,z2=−cos2θ
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is Dx=y=cosθ,z2=−cos2θ We have c=xa+yb+z(a×b) ⇒c.a=x and c.b=y⇒x=y=cosθ Now, c.c=|c|2 ⇒[xa+yb+z(a×b)].[xa+yb+z(a×b)]=|c|2 ⇒2x2+z2|a×b|2=1⇒x2+z2[|a|2|b|2−(a.b)2]=1 ⇒2x2+z2[1−0]=1[∵a⊥b∴a.b=0] ⇒2x2+z2=1⇒z2=1−2x2=1−2cos2θ=−cos2θ