The correct option is D x=y=cosθ,z2=−cos2θ
Accordingtoquestion,Here........unitvector=∣∣¯¯¯a∣∣=∣∣¯¯b∣∣=∣∣¯¯c=1∣∣¯¯¯a.¯¯b=0¯¯¯a.¯¯c=cosθ¯¯b.¯¯c=cosθgiven,x¯¯¯a+y¯¯b+z(¯¯¯aׯ¯b)−−−−−−−−−(1)Now,Takedotwith¯¯¯a,⇒¯¯¯a.¯¯c=x.¯¯¯a.¯¯¯¯a+y¯¯b.¯¯¯a+z(¯¯¯aׯ¯b).¯¯¯a∣∣(¯¯¯aׯ¯b)isperpendicularwithais0⇒cosθ=x+y.(0)∴x=cosθAgain,Takedotwith¯¯b,..........⇒¯¯b.¯¯c=x.¯¯¯a.¯¯¯b+y¯¯b.¯¯b+z(¯¯¯aׯ¯b).¯¯b∣∣(¯¯¯aׯ¯b)isperpendicularwithais0⇒¯¯b.¯¯c=y∴y=cosθAgain,Takedotwith¯¯c,...........⇒¯¯c.¯¯c=x.¯¯¯a.¯¯¯c+y¯¯b.¯¯c+z(¯¯¯aׯ¯b).¯¯c⇒1=cos2θ+cos2θ+z[¯¯¯a¯¯b¯¯c]wesimplify,[¯¯¯a¯¯b¯¯c]=(¯¯¯aׯ¯b).¯¯c∣∣(¯¯¯aׯ¯b)isperpendicular=∣∣¯¯¯a∣∣∣∣¯¯b∣∣sin900ˆn.¯¯c=ˆn.¯¯c=|ˆn|.∣∣¯¯c∣∣.cosβ|unitvector|ˆn|&∣∣¯¯c∣∣=1∴cosβ=1then,⇒1=cos2θ+cos2θ+z[¯¯¯a¯¯b¯¯c]⇒1=2cos2θ+z⇒z=1−2cos2θ∴z2=−cos2θSo,thatx=y=cosθandz2=−cos2θthereforthecorrectoptionisD.