Let the unit vectors →a and →b are perpendicular and the unimodulus vector →c inclined at an angle α to →a and →b. If →c=l→a+m→b+n(→a×→b), then
l=m
n2=1−2l2
n2=−cos2α
m2=1+cos2α2
|→a|=|→b|=|→c|=1
Angle between →b and →c= angle between →a and →c
⇒→b.→c=→a.→c=cosα
Also →a⊥→b⇒→a.→b=0
→c=l→a+m→b+n(→a×→b)→a.→c=l=cosα.→b.→c=m=cosα⇒m=l=cosα⇒1=2l2+n2⇒n2=1−2l2=1−2cos2α=−cos2α⇒l2=m2=1−n22=1+cos2α2