We have,
→a=a1^i+a2^j+a3^k,→b=b1^i+b2^k+b3^k,→c=c1^i+c2^j+c3^k
(→b+→c)=(b1+c1)^i+(b2+c2)^j+(b3+c3)^k
Now,
→a×(→b+→c)∣∣
∣
∣∣^i^j^ka1a2a3b1+c1b2+c2b3+c3∣∣
∣
∣∣
=^i[a2(b3+c3)−a3(b2+c2)]−^j[a1(b3+c3−a3(b1+c1)]+^k[a1(b2+c2−a2(b1+c1)]
=^i[a2b3+a2c3−a3b2−a3c2]+^j[−a1b3−a1c3+a3b1+a3c1]+^k[a1b2+a1c2−a2b1−a2c1].............(1)
→a×→b=∣∣
∣
∣∣^i^j^ka1a2a3b1b2b3∣∣
∣
∣∣
=^i[a2b3−a3b2]+^j[b1a3−a1b3]+^k[a1b2−a2b1]..........(2)
→a×→c=∣∣
∣
∣∣^i^j^ka1a2a3c1c2c3∣∣
∣
∣∣
=^i[a2c3−a3c2]+^j[a3c1−a1c3]+^k[a1c2−a2c1]...........(3)
On adding (2) and (3), we get:
(→a×→b)+(→a×→c)
=^i[a2b3+a2c3−a3b2−a3c2]+^j[b1a3+a3c1−a1b3−a1c3]+^k[a1b2+a1c2−a2b1−a2c1]..........(4)
Now, from (1) and (4), we have:
→a×(→b+→c)=→a×→b+→a×→c
Hence, the given result is proved.