wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

Let there be an A.P. with first term 'a', common difference 'd'. If an denotes its nth term and Sn the sum of first n terms, find.
(i) n and Sa, if a=5, d=3 and an=50.
(ii) n and a, if an=4, d=2 and Sn=-14.
(iii) d, if a=3, n=8 and Sn=192.
(iv)a, if an=28, Sn=144 and n=9.
(v) n and d, if a=8, an=62 and Sn=210.
(vi) n and an, if a = 2, d=8 and Sn=90.
(vii) k, if Sn=3n2+5n and ak=164.
(viii) S22, if d =22 and a22 =149

Open in App
Solution

As we know,
an=a+(n1)d
Sn=n2(2a+(n1)d)

(i)

n 50=5+(n1)3
45=3(n1)
15=n1
n=16
Sa=S5

52(10+(4)(3))=55

(ii)

4=a+(n1)2
4=a+2n2
6=a+2n ----- (i)

14=n2(2a+(n1)2)

=n(a+n1)

=n(62n+n1)

=n(5n)

n25n14=0

n27n+2n14=0

n(n7)+2(n7)=0

(n+2)(n7)=0

n=7,2
n cannot be negative, so n=7

a=614

=8

(iii)

Sn=192

192=82(6+(7)d)

192=4(6+7d)
48=6+7d
d=6

(iv)
an=28
a+8d=28 ----- (i)

Sn=144
92(2a+8d)=144
from (i)
92(2a+28a)=144
a+28=32
a=4

Hence , a=4

(v)

an=62
8+(n1)d=62
(n1)d=54 ------ (i)

Sn=210
n2(16+(n1)d)=210
from (i)

n2(16+54=210
n2(70)=210
n=6
So, 5d=54
d=545

=10.8

(vi)
an=2+(n1)8 ---- (i)

Sn=90

n2(4+(n1)8)=90

n(4+8n8)=180

8n24n180=0

2n2n45=0

2n210n+9n45=0

2n(n5)+9(n5)=0

(2n+9)(n5)=0
n=5,92
n cannot be -ve, so n=5
an=2+(n1)8

2+32=34

(vii)

ak=SkSk1

164=3k2+5k(3(k1)2+5(k1))

164=3k2+5k(3(k2+12k)+5(k1))

164=3k2+5k(3k2+36k+5k5))

(viii)

a22=149

a+21d=149
a+21(22)=149
a=462+149
a=313
Sn=11(2(313)+21(22))

=11(616+462)

=11(154)

=1694


flag
Suggest Corrections
thumbs-up
6
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Formula for Sum of N Terms of an AP
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon