Let there be an A.P. with first term 'a', common difference 'd'. If an denotes its nth term and Sn the sum of first n terms, find.
(i) n and Sa, if a=5, d=3 and an=50.
(ii) n and a, if an=4, d=2 and Sn=-14.
(iii) d, if a=3, n=8 and Sn=192.
(iv)a, if an=28, Sn=144 and n=9.
(v) n and d, if a=8, an=62 and Sn=210.
(vi) n and an, if a = 2, d=8 and Sn=90.
(vii) k, if Sn=3n2+5n and ak=164.
(viii) S22, if d =22 and a22 =149
As we know,
an=a+(n−1)d
Sn=n2(2a+(n−1)d)
(i)
n⇒ 50=5+(n−1)3
45=3(n−1)
15=n−1
n=16
Sa=S5
⇒52(10+(4)(3))=55
(ii)
4=a+(n−1)2
4=a+2n−2
6=a+2n ----- (i)
−14=n2(2a+(n−1)2)
=n(a+n−1)
=n(6−2n+n−1)
=n(5−n)
n2−5n−14=0
n2−7n+2n−14=0
n(n−7)+2(n−7)=0
(n+2)(n−7)=0
n=7,−2
n cannot be negative, so n=7
a=6−14
=−8
(iii)
Sn=192
192=82(6+(7)d)
192=4(6+7d)
48=6+7d
d=6
(iv)
an=28
a+8d=28 ----- (i)
Sn=144
92(2a+8d)=144
from (i)
92(2a+28−a)=144
a+28=32
a=4
Hence , a=4
(v)
an=62
8+(n−1)d=62
(n−1)d=54 ------ (i)
Sn=210
n2(16+(n−1)d)=210
from (i)
n2(16+54=210
n2(70)=210
n=6
So, 5d=54
d=545
=10.8
(vi)
an=2+(n−1)8 ---- (i)
Sn=90
n2(4+(n−1)8)=90
n(4+8n−8)=180
8n2−4n−180=0
2n2−n−45=0
2n2−10n+9n−45=0
2n(n−5)+9(n−5)=0
(2n+9)(n−5)=0
n=5,−92
∵ n cannot be -ve, so n=5
an=2+(n−1)8
⇒2+32=34
(vii)
ak=Sk−Sk−1
164=3k2+5k−(3(k−1)2+5(k−1))
164=3k2+5k−(3(k2+1−2k)+5(k−1))
164=3k2+5k−(3k2+3−6k+5k−5))
(viii)
a22=149
a+21d=149
a+21(22)=149
a=−462+149
a=−313
Sn=11(2(−313)+21(22))
=11(−616+462)
=11(−154)
=−1694