Let θ1,θ2,⋯,θ10 be positive valued angles (in radian) such that θ1+θ2+⋯+θ10=2π. Define the complex numbers z1=eiθ1, zk=zk−1eiθk for k=2,3⋯10, where i=√−1. Consider the statements P and Q given below:
P:|z2−z1|+|z3−z2|+⋯+|z10−z9|+|z1−z10|≤2π
Q:|z22−z21|+|z23−z22|+⋯+|z210−z29|+|z21−z210|≤4π