. Let θ∈(0,π4) and t1=(tanθ)tanθ, t2=(tanθ)cotθ, t3=(cotθ)tanθ and t4=(cotθ)cotθ, then
Given θ∈(0,π4), then tanθ<1 and cotθ>1.
Let tanθ=1−h and cotθ=1+h where h is very small and positive.
then t1=(1−h)1−h, t2=(1−h)1+h, t3=(1+h)1−h
and t4=(1+h)1+h
Hence t4>t3>t1>t2.