wiz-icon
MyQuestionIcon
MyQuestionIcon
3
You visited us 3 times! Enjoying our articles? Unlock Full Access!
Question

Let θ(0,π2). If the system of linear equations,
(1+cos2θ) x+sin2θ y+4sin3θ z=0cos2θ x+(1+sin2θ) y+4sin3θ z=0cos2θ x+sin2θ y+(1+4sin3θ) z=0
has a non-trivial solution, then the value of θ is

A
7π18
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
π18
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
4π9
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
5π18
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A 7π18
Δ=∣ ∣ ∣1+cos2θsin2θ4sin3θcos2θ1+sin2θ4sin3θcos2θsin2θ1+4sin3θ∣ ∣ ∣C1C1+C2+C3Δ=∣ ∣ ∣2+4sin3θsin2θ4sin3θ2+4sin3θ1+sin2θ4sin3θ2+4sin3θsin2θ1+4sin3θ∣ ∣ ∣Δ=(2+4sin3θ)∣ ∣ ∣1sin2θ4sin3θ11+sin2θ4sin3θ1sin2θ1+4sin3θ∣ ∣ ∣R2R2R1 and R3R3R1Δ=∣ ∣ ∣1sin2θ4sin3θ010001∣ ∣ ∣×(2+4sin3θ)Δ=(2+4sin3θ)
For non-trivial solution
Δ=0
sin3θ=12
θ=7π18

flag
Suggest Corrections
thumbs-up
15
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon