Let θ∈(0,π2). If the system of linear equations, (1+cos2θ)x+sin2θy+4sin3θz=0cos2θx+(1+sin2θ)y+4sin3θz=0cos2θx+sin2θy+(1+4sin3θ)z=0
has a non-trivial solution, then the value of θ is
A
7π18
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
π18
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
4π9
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
5π18
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A7π18 Δ=∣∣
∣
∣∣1+cos2θsin2θ4sin3θcos2θ1+sin2θ4sin3θcos2θsin2θ1+4sin3θ∣∣
∣
∣∣C1→C1+C2+C3⇒Δ=∣∣
∣
∣∣2+4sin3θsin2θ4sin3θ2+4sin3θ1+sin2θ4sin3θ2+4sin3θsin2θ1+4sin3θ∣∣
∣
∣∣⇒Δ=(2+4sin3θ)∣∣
∣
∣∣1sin2θ4sin3θ11+sin2θ4sin3θ1sin2θ1+4sin3θ∣∣
∣
∣∣R2→R2−R1and R3→R3−R1⇒Δ=∣∣
∣
∣∣1sin2θ4sin3θ010001∣∣
∣
∣∣×(2+4sin3θ)⇒Δ=(2+4sin3θ)
For non-trivial solution Δ=0 ⇒sin3θ=−12 ⇒θ=7π18