Let θ,ϕ∈[0,2π] be such that 2cosθ(1−sinϕ)=sin2θ(tanθ2+cotθ2)cosθ−1,tan(2π−θ)>0 and -1 < sinθ<−√32. Then ϕ cannot satisfy
3π2<ϕ<2π
2cosθ(1−sinϕ)=2sin2θsinθcosϕ−1∴2cosθ−2cosθsinϕ=2sinθcosϕ−1∴2cosθ+1=2sin(θ+ϕ)tan(2π−θ)>0⇒tanθ<0
and −1<sinθ<−√32
⇒θ∈(3π2,5π3)
⇒0<cosθ<12
12<sin(θ+ϕ)<1
⇒π6+2π<sin(θ+ϕ)<5π6+2π
2π+π6−θmax<ϕ<2π+5π6−θmin
⇒π2<ϕ4π3