The correct option is D 3π2<ϕ<2π
tan(2π−θ)>0
0<2π−θ<π2 or π<2π−θ<3π2
⇒3π2<θ<2π or π2<θ<π…(1)
Also −1<sinθ<−√32
3π2<θ<5π3…(2)
From (1) and (2)
θ∈(3π2,5π3)…(3)
Now,
2cosθ(1−sinϕ)=sin2θ(tanθ2+cotθ2)cosϕ−1
⇒cosθ+12=sin(θ+ϕ)
⇒2cosθ+1=2sin(θ+ϕ)…(4)
As θ∈(3π2,5π3)⇒2cosθ+1∈(1,2)
cosθ∈(0,12)
sin(θ+ϕ)∈(12,1)⋯(5)
As θ+ϕ∈[0,4π] ⋯(6){Given}
From equation (5) and (6)
θ+ϕ∈(π6,5π6) or θ+ϕ∈(13π6,17π6)
∵θ∈(3π2,5π3)
⇒ϕ∈(−3π2,−2π3)∪(2π3,7π6)
⇒ϕ∈(2π3,7π6)
Among the given options clearly π2<ϕ<4π3 is the only set contains all ϕ values.