Let three vectors →a,→b and →c be such that →c is coplanar with →a and →b,→a.→c=7 and →b is perpendicular to →c, where →a=−^i+^j+^k and →b=2^i+^k, then the value of 2|→a+→b+→c|2 is
Open in App
Solution
Let →c=λ(→b×(→a×→b)) =λ((→b.→b)→a−(→b.→a)→b) =5λ((−^i+^j+^k)+2^i+^k) =λ(−3^i+5^j+6^k) →c.→a=7⇒3λ+5λ+6λ=7 λ=12 ∴2∣∣∣(−32−1+2)^i+(52+1)^j+(3+1+1)^k∣∣∣2 =2(14+494+25)=25+50=75