Let △PQR be a triangle. Let →a=−−→QR,→b=−−→RP and →c=−−→PQ. If |→a|=12,|→b|=4√3 and →b.→c=24, then which of the following is (are) true?
A
|→c|22−|→a|=12
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
|→c|22+|→a|=30
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
|→a×→b+→c×→a|=48√3
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
→a.→b=−72
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct options are A|→c|22−|→a|=12 C|→a×→b+→c×→a|=48√3 D→a.→b=−72 As PQR is a triangle, So,→a+→b+→c=0 ⇒|→b+→c|2=|−→a|2⇒|→b|2+|→c|2+2→b⋅→c=|→a|2⇒|→c|2=48
Option (1): |→c|22−|→a|=24−12=12 Option (1) is correct.
Option (2): |→c|22+|→a|=24+12=36 Option (2) is not correct.
Now,→a+→b+→c=0⇒→a.→b+→b.→b+→c.→b=0⇒→a.→b=−48−24=−72 Option (4) is correct.
→a.→b=−72 ⇒|→a||→b|cosθ=−72 ⇒cosθ=−√32 ⇒θ=5π6
→a+→b+→c=0 ⇒→a×→a+→a×→b+→a×→c=0⇒→a×→b=−(→a×→c)=→c×→a ∴|→a×→b+→c×→a|=2|→a×→b|=48√3 Option (3) is correct.