Let two fair six-faced dice A and B be thrown simulatneously. If E1 is the event that die A shows up four, E2 is the event that die B shows up two and E3 is the event that the sum of numbers on both dice is odd, then which of the following statements is/are true ?
E1 and E3 are independent
Clearly, E1={(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)}E2={(1,2),(2,2),(3,2),(4,2),(5,2),(6,2)}and E3={(1,2),(1,4),(1,6),(2,1),(2,3),(2,5)(3,2),(3,4),(3,6),(4,1),(4,3),(4,5),(5,2),(5,4),(5,6),(6,1),(6,3),(6,5)}
⇒P(E1)=636=16,P(E2)=636=16
and P(E3)=1836=12
Now, P(E1∩E2)=P
(getting 4 on die A and 2 on die B)
=136=16×16=P(E1).P(E2)
P(E2∩E3)=P (getting 2 on die B and sum of numbers on both dice is odd)
=336=112=16×12=P(E2).P(E3)
P(E1∩E3)=P (getting 4 on die A and sum of numbers on both dice is odd)
=336=112=16×12=P(E1).P(E3)
and P(E1∩E2∩E3)=P (getting 4 on die A, 2 on die B and sum of numbers is odd)
=P (impossible event )=0 ≠P(E1).P(E2).P(E3)
Hence, E1,E2 and E3 are not independent.