Two fixed points are A(a, 0) and B(-a, 0). If ∠A−∠B=θ, then the locus of point C of triangle ABC will be
The correct option is D (x2−y2+2xycotθ=a2.)
Given ∠A−∠B=θ⇒tan(A−B)=tanθ .............(i)
In right angled triangle CDA, tan A = ka−h
and similarly in triangle CDB, tan B = ka+h
Also from (i), tanA−tanB1+tanA.tanB=tanθ
Substituting the values of tan A and tan B, we get
⇒ka−h−ka+h1+(ka−h)(ka+h)=tanθ
⇒k(a+h−a+h)a2−h2+k2=tanθ
⇒2hka2−h2+k2=1cotθ
⇒a2−h2+k2=2hkcotθ
⇒h2−k2+2hkcotθ=a2
Hence the locus is x2−y2+2xycotθ=a2.