Let U = {1,2,3,4,5,6,7,8,9},
A = {2,4,6,8} and B = {2,3,5,7}.
Verify that :
(i) (A∪B)′=A′∩B′
(ii) (A∩B)′=A′∪B′.
i) U = {1,2,3,4,5,6,7,8,9}
A = {2,4,6,8}
B = {2,3,5,7}
We have ,
A∪B = {x:x ϵ A or x ϵ B}
= {2,3,4,5,6,7,8}
∴(A∪B)′ = {x ϵ U:x/ϵB}
= {1,9}
A' = {x ϵ U:x/ϵ A}
= {1,3,5,7,9}
B′ = {x ϵ U:x ϵ/ B}
{1,4,6,8,9}
Hence A′∩B′ = {1, 9}
Hence, (A∪B)′= A′∩B′ = {1,9}
(ii) A∩B = {x:x ϵ A and x ϵ A∪B}
= {2}
∴(A∩B)′ = {x ϵ U:x/ϵA∩B}
= {1,3,4,5,6,7,8,9}
Also
A∪B' = {x:x ϵ A′ or x ϵ B′}
= {1,3,4,5,6,7,8,9}
Hence,(A∪B)′=A′∪B′
= {1,3,4,5,6,7,8,9}