Let u and v are unit vectors and w is a vector such that u×v+u=w and w×u=v then find the value of [uvw].
0
1
|w|
2|w|
Explanation for the correct option:
Given that, u×v+u=w
Multiplying both the sides with vector u
(u×v+u)×u=w×u(u×v)×u+u×u=v(u·u)v–(v·u)u+u×u=v(1)v–(v·u)u+0=vv–(v·u)u=v⇒u·v=0
Now,
u·(v×w)=u·(v×(u×v+u))=u·(v×(u×v)+v×u)=u·((v·v)u–(v·u)v+v×u)=u(|v|2u-0+v×u)=|v|2(u·u)–u·(v×u)=|v|2|u|2–0=1
Therefore, [uvw]=1
Hence, the correct option is (B)