Step 1: Finding A′
U={1,2,3,4,5,6},A={2,3}
B={3,4,5}
So, A′=U−A
={1,2,3,4,5,6}−{2,3}
={1,4,5,6}
Step 2: Finding B′.
B′=U−B
B′={1,2,3,4,5,6}−{3,4,5}
={1,2,6}
Step 3: Finding A′∩B′
∵A′={1,4,5,6} and B′={1,2,6}
∴A′∩B′={1,6}
Step 4: Finding A∪B
A={2,3},B={3,4,5}
∴A∩B={2,3,4,5}
Step 5: Finding (A∩B′)
∵A∪B={2,3,4,5}
∴(A∪B)′=U−(A∪B)
={1,2,3,4,5,6}−{2,3,4,5}
={1,6}
Step 6: Solve for (A∪B)′=A′∩B′
∵A′∩B′={1,6}
And (A∪B)′={1,6}
∴(A∪B)′=A′∩B′
Hence proved.