Let us define the length of a vector ^ai+^bj+^ck as |a|+|b|+|c|. This definition coincides with the usual definition of length of a vector ^ai+^bj+^ck if and only if
We have,
Let the length of the vector →r=aˆi+bˆj+cˆk.
Then,
∣∣→r∣∣=√a2+b2+c2
We can write this,
∣∣→r∣∣=√a2+b2+c2≈|a|+|b|+|c|
If
→c=0,then
∣∣→r∣∣=√a2+b2+0≈|a|+|b|+0
√a2+b2=|a|+|b|
\end{align}\]
If
\[\begin{align}
a=b=0,then
∣∣→r∣∣=√0+0+c2≈0+0+c
√c2=|c|
Hence, this is the aswer.