We have,
The plane P1 is parallel to the vector 2ˆi+3ˆk and 4ˆj−3ˆk
Then the normal of P1=(2ˆi+3ˆk)×(4ˆj−3ˆk)
∣∣ ∣∣ijk20304−3∣∣ ∣∣
=ˆi(0−12)−ˆj(−6−0)+ˆk(8−0)
=−12ˆi+6ˆj+8ˆk
The normal of P2=(ˆj−ˆk)×(3ˆi+3ˆj)
∣∣ ∣∣ijk01−1330∣∣ ∣∣
ˆi(0+3)−ˆj(0+3)+ˆk(0−3)
=3ˆi−3ˆj−3ˆk
The line of intersection of the planes will be =(−12ˆi+6ˆj+8ˆk)×(3ˆi−3ˆj−3ˆk)
∣∣ ∣∣ijk−12683−3−3∣∣ ∣∣
=(−18+24)ˆi−(36−24)ˆj+(36−18)ˆk
=6ˆi−12ˆj+18ˆk
Now, the angle between →A=6ˆi−12ˆj+18ˆkand2ˆi+ˆj−2ˆk
is given by
cosθ=(6)(2)+(−12)(1)+(18)(−2)√62+(−12)2+(18)2√22+12+(−2)2
cosθ=12−12−36√504√9
cosθ=−36√4×126(3)
cosθ=−362√126×3
cosθ=−63√14
cosθ=−2√14
θ=cos−1(−2√14)
Hence, this is the
answer.