Let →a=17(2^i+3^j+6^k),→b=17(6^i+2^j−3^k),→c=c1^i+c2^j+c−3^k and matrix A=⎡⎢
⎢
⎢⎣2737676727−37c1c2c3⎤⎥
⎥
⎥⎦
If AAT=I, then →c is equal to
17(−3^i+6^j−2^k)
−17(−3^i+6^j−2^k)
∵ AAT=I⇒→a, →b, →c are orthogonal unit vectors
∴ →C=±(→a×→b)=±149∣∣
∣
∣∣^i^j^k23662−3∣∣
∣
∣∣⇒→C=±(−3^i+6^j−2^k)7∵ |→a×→b|=1