wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let a=^i+^j and b=2^i^k. The point of intersection of the lines r×a=b×a and r×b=a×b is

A
^i+^j+2^k
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
3^i^j+^k
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
3^i+^j^k
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
^i^j^k
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C 3^i+^j^k
Let point of intersection =r=m^i+n^j+p^k
r×a=∣ ∣ ∣^i^j^kmnp110∣ ∣ ∣
^i(0p)^j(0p)+^k(mn)
b×a=∣ ∣ ∣^i^j^k201110∣ ∣ ∣
^i(1)^j(1)+^k(2)
^i^j+2^k
r×b=∣ ∣ ∣^i^j^kmnp201∣ ∣ ∣
^i(n)^j(m2p)+^k(2n)
n^i+^j(m+2p)+^k(2n)
a×b=(b×a)=^i+^j2^k
(r×a)=(b×a)
^i(p)+^j(p)+^k(mn)=^i+^j(1)+^k(2)
p=1(1)mn=2(2)
and (r×a)=(b×a)
^i(n)+^j(m+2p)+^k(2n)=^i(1)+^j(1)+^k(2)
n=1(3)m+2p=1(4)
m2=1m=3
n=1p=1
3^i+^j^k is the ans

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Skew Lines
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon