Let →a×(→b×→c)=→b3+→c2 and →b×(→c×→a)=−→c2 If →a,→b and →c are non-collinear pair wise unit vectors, then volume of a parallelopiped, whose coterminous edges are →a,→b and →c, is
A
1136
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
2336
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of these
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D None of these →a×(→b×→c)=→b3+→c2 ⇒(→a.→c)→b−(→a.→b)→c=→b3+→c2 →a.→c=13 & →a.→b=−12 →b×(→c×→a)=−→c2 ⇒(→b.→a)→c−(→b.→c)→a=−→c2⇒→b.→c=0 volume of parallelopiped =|[→a→b→c]| [→a→b→c]2=∣∣
∣
∣∣→a.→a→a.→b→a.→c→b.→a→b.→b→b.→c→c.→a→c.→b→c.→c∣∣
∣
∣∣ =∣∣
∣
∣
∣∣1−1213−12101301∣∣
∣
∣
∣∣=2336 ∴volume=√236