3 →a+7 →b is collinear with →c
⇒3 →a+7 →b=λ→c ... (1)
3 →b+2→c is collinear with →a
⇒3 →b+2→c=μ→a ... (2)
Finding out →b from (1) and putting it in (2), we get,
3×λ→c−3→a7+2→c=μ→a
⇒3λ→c−9→a+14→c=7μ→a
⇒→c(3λ+14)=→a(7μ+9)
Since, →a and →c are not collinear,
3λ+14=0⇒λ=−143 and
7μ+9=0⇒μ=−97
Putting the value of μ in (2), we get,
3→b+2→c=−9→a7
⇒9→a+21→b+14→c=0