Given that
|→a|=1,|→b|=1 and |→c|=1
∵→a.→b=0
⇒ vector →a is perpendicular to vector →b and →a.→c=0
⇒ vector →a is perpendicular to vector →b
∵ vector →a is perpendicular to both vector →a and →b.
∴→a will be parallel to perpendicular vector b×c.
∴ Let →a=λ(→b×→c) ....(1)
where λ is any scalar
But →b×→c=|→b||→c|sinπ6^n
⇒→b×→c=12^n [∵|→b|=|→c|=1]
∴ From equation (1),
→a=λ2^n
⇒(→a)2=(λ2^n)2
⇒|→a|2=λ24|^n|2
⇒1=λ24.1
⇒λ2=4
∴λ=±2
∴ From equation (1)
∴→a=±2(→b×→c)