Let →a,→b,→c be vectors of length 3,4,5 respectively. Let →a be perpendicular to →b+→c,→bto→c+→a and →cto→a+→b. Then ∣∣→a+→b+→c∣∣ is
∣∣→a+→b+→c∣∣=√(→a+→b+→c)2=√a2+b2+c2+2(→a.→b+→b.→c+→c.→a) {Modulus formula for vectors}
∵→a.(→b+→c)=0,→b.(→c+→a)=0&→c.(→a+→b)=0 [As the given conditions of being perpendicular}
⇒→a.→b+→b.→c+→c.→a=0 {expanding the previous expression and substituting in the first expression}
⇒∣∣→a+→b+→c∣∣=√a2+b2+c2=√32+42+52=5√2