wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let α=3^i+^j and β=2^i^j+3^k. If β=β1β2, where β1 is parallel to α and β2 is perpendicular to α, then β1×β2 is equal to?

A
3^i+9^j+5^k
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
3^i9^j5^k
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
12(3^i+9^j+5^k)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
12(3^i9^j+5^k)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C 12(3^i+9^j+5^k)
α=3^i+^j
β=2^i^j+3^k
β=β1β2
β1=λ(3^i+^j),β2=λ(3^i+^j)2^ii+j3^k
β2α=0
(3λ2)3+(λ+1)=0
9λ6+λ+1=0
λ=12
β1=32^i+12^j
β2=12^i+32^j3^k
Now β1×β2=∣ ∣ ∣ ∣ ∣^i^j^k3212012323∣ ∣ ∣ ∣ ∣
=^i(320)^j(920)+^k(94+14)
=32^i+92^j+52^k
=12(3^i+9^j+5^k)
Aliter:
β=β1β2
β^α=β1^α=|β1|
β1=(β^α)^α
β2=(β^α)^αβ
β1×β2=(β^α)^α×β
=510(3^i+^j×(2^i^j+3^k)
=12(3^i+9^j+5^k).

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Applications of Cross Product
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon