Let →p,→q,→r be three mutually perpendicular vectors of the same magnitude. lf a vector →x satisfies the equation →p×{(→x−→q)×→p}+→q×{(→x−→r)×→q}+→r×{(→x−→p)×→r}is given by
A
12(→p+→q−2→r)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
12(→p+→q+→r)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
13(→p+→q−2→r)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
13(2→p+→q−→r)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B12(→p+→q+→r) To make the problem easier, let ¯¯¯p=^i,¯¯¯q=^j,¯¯¯r=^k. LHS becomes (¯¯¯x−^j)−^i.(¯¯¯x−^j)^i+(¯¯¯x−^k)−^j.(¯¯¯x−^k)^j+(¯¯¯x−^i)−^k.(¯¯¯x−^i)^k ∴0=3(a^i+b^j+c^k)−^i−^j−^k−a^i−b^j−c^k ∴^i+^j+^k=2a^i+2b^j+2c^k Comparing co-efficients, we get a=b=c=12 Thus, ¯¯¯x=12(¯¯¯p+¯¯¯q+¯¯¯r)