Let →r1,→r2,→r3,.......→rn be the position vectors of points P1,P2,P3,......,Pn relative to the origin O. If the vector equation a1→r1+a2→r2+......+an→rn=0 holds, then a similar equation will also hold w.r.t. to any other origin provided
A
a1+a2+.....+an=n
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
a1+a2+.....+an
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
a1+a2+....+an=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
a1=a2=a3=....=an=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Ca1+a2+....+an=0 Given a1→r1+a2→r2+.....+an→rn=0 Now →a+→r′1=→r1 and so on Hence, a1(→a+→r′1)+a2(→a+→r′2)+....+an(→a+→r′n)=0 a1→r′1+a2→r′2+....+an→r′n+→a(a1+a2+....+an)=0 Hence, a1→r′1+a2→r′2+....+an→r′n=0 if a1+a2+....+an=0.