Let →r be the only point of intersection of the planes →r.→a=P1.→r.→b=P2.→r.→c=P3 then
A
[¯a¯b¯c]=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
→r=P1(→b×→c)+P2(→c×→a)+P3(→a×→b)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
→a,→b,→c are non-coplanar
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
→r[→a→b→c]=P1(→b×→c)+P2(→c×→a)+P3(→a×→b)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct options are C→a,→b,→c are non-coplanar
D→r[→a→b→c]=P1(→b×→c)+P2(→c×→a)+P3(→a×→b) Let →r=λ1(¯bׯc)+λ2(¯c×→a)+λ3(→a×→b)→r.→a=λ1[¯a¯b¯c]⇒P1=λ1[¯a¯b¯c]λ1=P1[¯a¯b¯c]similarlyλ2=P2[¯a¯b¯c],λ=P3[¯a¯b¯c]