Let c→be a vector perpendicular to the vectors a=i+j-kand b=i+2j+k. If c·(i+j+3k)=8, then the value of c·(axb) is equal to
Step 1: Calculating the value of (axb) and c vectors
c→·(a→xb→)=c→a→b→
(a→xb→)=ijk11-1121⇒(a→xb→)=i(1+2)-j(1+1)+k(2-1)⇒(a→xb→)=3i-2j+k⇒(a→xb→)=(3,-2,1)
c→⊥a→,c→⊥b→⇒C∥(a→×b→)⇒c→=λ(a→×b→)⇒c→=λ(3i-2j+k)
so,
c→(i+j+3k)=8⇒3λ-2λ+3λ=8⇒4λ=8⇒λ=84⇒λ=2
Step 2: Calculating the value of c→.(a→xb→)
c→=6i-4j+2kc→·(a→×b→)=|c→a→b→|⇒c→·(a→×b→)=6-4211-1121⇒c→·(a→×b→)=6(1+2)+4(1+1)+2(2-1)⇒c→·(a→×b→)=6(3)+4(2)+2(1)⇒c→·(a→×b→)=18+8+2⇒c→·(a→×b→)=28
Hence, the value of c·(axb) is 28.