wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let cbe a vector perpendicular to the vectors a=i+j-kand b=i+2j+k. If c·(i+j+3k)=8, then the value of c·(axb) is equal to


Open in App
Solution

Step 1: Calculating the value of (axb) and c vectors

c·(axb)=cab

(axb)=ijk11-1121(axb)=i(1+2)-j(1+1)+k(2-1)(axb)=3i-2j+k(axb)=(3,-2,1)

ca,cbC(a×b)c=λ(a×b)c=λ(3i-2j+k)

so,

c(i+j+3k)=83λ-2λ+3λ=84λ=8λ=84λ=2

Step 2: Calculating the value of c.(axb)

c=6i-4j+2kc·(a×b)=|cab|c·(a×b)=6-4211-1121c·(a×b)=6(1+2)+4(1+1)+2(2-1)c·(a×b)=6(3)+4(2)+2(1)c·(a×b)=18+8+2c·(a×b)=28

Hence, the value of c·(axb) is 28.


flag
Suggest Corrections
thumbs-up
13
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Dot Product
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon