Let vertices of a △ABC are A(−3,2,0),B(−2,0,2) and C(1,−1,0). If D is a point on BC and AD bisects the angle ∠BAC, then point D is
A
(−78,−38,−108)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
(78,38,−108)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(−78,−38,108)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
(78,38,108)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C(−78,−38,108) Given : vertices A(−3,2,0),B(−2,0,2) and C(1,−1,0) ∴AB=√(−3+2)2+(2−0)2+(0−2)2=3
and AC=√(−3−1)2+(2+1)2=5
As, AD is the angle bisector : AB:AC=BD:DC=3:5
So, D≡(3−103+5,−3+03+5,0+103+5) ⇒D≡(−78,−38,108)